The equivalence of the computational Diffie–Hellman and discrete logarithm problems in certain groups
نویسنده
چکیده
Whether the discrete logarithm problem can be reduced to the Diffie–Hellman problem is a celebrated open question. The security of Diffie–Hellman key exchange and other cryptographic protocols rests on the assumed difficulty of the computational Diffie–Hellman problem; such a reduction would show that this is equivalent to assuming that computing discrete logarithms is hard. What is known is that a near-reduction exists for general groups, assuming that a conjecture about the existence of smooth numbers in an interval is true. Given access to a Diffie–Hellman oracle, and a small amount of additional information (this being the parameters of certain elliptic curves with smooth order), it is possible to compute discrete logarithms using a polylogarithmic number of calls to the oracle.
منابع مشابه
An Analysis of the Vector Decomposition Problem
The vector decomposition problem (VDP) has been proposed as a computational problem on which to base the security of public key cryptosystems. We give a generalisation and simplification of the results of Yoshida on the VDP. We then show that, for the supersingular elliptic curves which can be used in practice, the VDP is equivalent to the computational Diffie-Hellman problem (CDH) in a cyclic ...
متن کاملMatrix representation of cryptographic functions
The Discrete Logarithm and the Diffie-Hellman are two hard computational problems, closely related to cryptography and its applications. The computational equivalence of these problems has been proved only for some special cases. In this study, using LU-decomposition to Vandermonde matrices, we are able to transform the two problems in terms of matrices, thus giving a new perspective to their e...
متن کاملA summary of recent and old results on the security of the Diffie-Hellman key exchange protocol in finite groups
Regarding fundamental protocols in cryptography, the Diffie-Hellman (Diffie and Hellman, 1976) public key exchange protocol is one of the oldest and most widely used in today’s applications. Consequently, many specific cryptographic implementations depend on its security. Typically, an underlying (finite dimensional) group is selected to provide candidates for the key. The study of the security...
متن کاملShort Exponent Diffie-Hellman Problems
In this paper, we study short exponent Diffie-Hellman problems, where significantly many lower bits are zeros in the exponent. We first prove that the decisional version of this problem is as hard as two well known hard problems, the standard decisional Diffie-Hellman problem (DDH) and the short exponent discrete logarithm problem. It implies that we can improve the efficiency of ElGamal scheme...
متن کاملKnapsack Diffie-Hellman: A New Family of Diffie-Hellman
Diffie-Hellman problems have been widely involved in the design of various cryptographic protocols. Its general family is based on the discrete logarithm over a finite field. Since 2000, its another family which is based on elliptic curve discrete logarithm as well as bilinear pairing, e.g. Weil or Tate pairing, has been attracted significant studies. Thereafter, various cryptographic protocols...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012